СТАТИСТИКА ДВИЖЕНИЯ КЛАССИЧЕСКИХ ИОНОВ Cs⁺ И CI⁻ В ЗАМКНУТОЙ ПОТЕНЦИАЛЬНОЙ ПОЛОСТИ В ПОЛИМЕРЕ С АКЦЕПТОРАМИ И ДОНОРАМИ ЭЛЕКТРОНОВ

Л. И. Колесникова, Л. Ю. Русин, М. Б. Севрюк

Институт энергетических проблем химической физики РАН, г. Москва

Одним из основных факторов, препятствующих развитию фотовольтаических технологий на основе органических полимерных полупроводников, является недостаток динамической и статистической информации о взаимодействии носителей заряда с фрагментами полимерной цепи в потенциальных полостях, образованных надмолекулярной структурой полимера. В качестве модельной задачи мы рассмотрели движение классических ионов Cs⁺ и Cl⁻ в сферической полости (радиуса 600 Бор) и в эллипсоидальной полости (с полуосями 600, 375 и 150 Бор), в которых также могут присутствовать неподвижные цилиндрические "перемычки", моделирующие поперечные связи между макромолекулами в сетчатых полимерах, и положительно или отрицательно заряженные сферические включения ("ядра"), моделирующие соответственно акцепторы или доноры электронов. Предполагалось, что ионы (связанные стандартным потенциалом взаимодействия в молекуле CsCl) отталкиваются от преград — стенки полости, перемычек и ядер — по закону мгновенного упругого удара. Исследован также случай, когда при каждом ударе о преграду некоторая доля кинетической энергии иона диссипирует.

Обнаружен ряд статистических закономерностей, относящихся к соударениям ионов с преградами и к актам диссоциации молекулы (изменения знака внутренней энергии E пары Cs^+-Cl^- с отрицательного на положительный) и рекомбинации ионов (изменения знака E с положительного на отрицательный). В отсутствие заряженных ядер акты диссоциации и рекомбинации могут происходить только при столкновениях ионов с преградами (так как в промежутках между столкновениями энергия E сохраняется). При наличии же ядер, напротив, акты осуществляются главным образом "в полете" — в промежутках между соударениями ионов с преградами. Часть результатов расчетов (без диссипации энергии и отрицательно заряженных ядер) изложена в статье Π . И. Колесникова, Π . Ю. Русин, М. Б. Севрюк, Химическая физика, 2010, т. 29, \mathbb{N} 10, с. 66–76.